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Abstract: We consider pure spinor strings that propagate in the background generated

by a sequence of TsT transformations. We use the fact that U(1) isometry variables of

TsT-transformed background are related to the isometry variables of the initial background

in the universal way that is independent of the details of the background. We will argue

that after redefinitions of pure spinors and the fermionic variables we can construct pure

spinor action with manifest U(1) isometry. This fact implies that the pure spinor string in

TsT-transformed background is described by pure spinor string in the original background

where world-volume modes are subject to twisted boundary conditions. We will argue

that these twisted boundary conditions generally prevent to prove the quantum conformal

invariance of the pure spinor string in AdS5×S5 background. We determine the conditions

under which this quantum conformal invariance can be proved. We also determine the Lax

pair for pure spinor strings in the TsT-transformed background.
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1. Introduction and summary

It was noticed recently in [1] that in situation when the initial geometry contains a two-

torus, a regular background can be generated by using a combination of T-duality trans-

formation on one angle variable followed a shift of the second isometry variable and finally

performing the second T-duality along the first isometry variable. This chain of duality

transformations that produces family of one-parameter deformation of initial background

is known as TsT transformation. The work [1] can be generalised to construct regular

multi-parameter deformations of gravity background if they contain a higher dimensional

torus and it is possible to perform many chains of TsT transformations [2].

Remarkable fact considering TsT transformations is that they are very powerful for

searching of new less supersymmetric examples of AdS/CFT correspondence. In particular,

it was used in [1] to obtain a deformation of AdS5 ×S5 geometry that is conjectured to be

dual to supersymmetric marginal deformation of N = 4 SYM. This deformation is called

as a β deformation.

Some aspects of more general three-parameter deformed AdS5 ×S5 and the dual non-

supersymmetric deformations of N = 4 SYM have been studied in papers [4 – 36]. It is

unclear, however, if the non-supersymmetric string background is stable. For example, it

is known that the spectrum of string theory in the TsT-transformed flat space contains

tachyon [28]. However it does not imply that string theory on the deformed AdS5 × S5

is unstable because the TsT-transformed flat space is singular at space infinity while the

deformed AdS5 ×S5 is regular everywhere. As was shown in [2, 3] the TsT transformation

has very nice property that it can be implemented on the string sigma model leading to

the simple relations between string coordinates of the initial and TsT dual-transformed
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background. These relations allow to prove that the classical solutions of string theory

equations of motion in a deformed background are in one-to one correspondence with

those in the initial background with twisted boundary conditions imposed on the U(1)

isometry fields that parametrise the torus.

The analysis performed in [2] was restricted to the bosonic part of type IIB Green-

Schwarz superstring action on the deformed AdS5 × S5. This work was generalised to

the full Green-Schwarz superstring action in the remarkable paper [3]. The problem with

superstring extension is how to define the TsT transformation for fermion variables since

they are not neutral under T-duality transformations [73, 74]. The key idea that was

presented in [3] and that solves this problem is to redefine the original fermions in such a

way that they become neutral under the isometries of the torus.

The goal of this paper is to see that the same analysis can be performed in case of pure

spinor string proposed by Berkovits [37 – 41].1 In a recent paper [48], quantum consistency

was argued by means of algebraic renormalization arguments. The one-loop conformal

invariance of pure spinor string was also demonstrated in [50]. 2 Vertex operators for

massless excitations have been proposed some time ago [47] and checked to be classically

BRST invariant [55]. Algebra of currents was also classically calculated in [56] and the first

attempt to calculate their operator product expansion was performed in [57].

All these results, especially proof of the quantum consistency of the pure spinor string

in AdS5 × S5 suggest that pure spinor string could be the correct way to study the string

theory on the γ-deformed background. The goal of this paper is to demonstrate this fact.

Let us outline its content.

We will show that we can formulate the pure spinor string in the deformed background

using the TsT transformations from the original AdS5 × S5 background. As in the case of

GS superstring [3] we redefine both fermions and pure spinors variables in order that they

become neutral under isometry transformations. Then we argue that the pure spinor string

in γ-deformed AdS5 ×S5 background is equivalent to the pure spinor string in the original

AdS5 ×S5 background where the world-sheet fields obey twisted boundary conditions. We

will also argue that the existence of these twisted boundary conditions is crucial for the

proof of the quantum consistency of the pure spinor string in γ deformed background.

More precisely, the proof of the quantum consistency of pure spinor string in AdS5 × S5

presented in [48] was based on the explicit gauge invariance of the pure spinor string in

AdS5×S5 background. On the other hand the twisted boundary conditions for world-sheet

fields are naturally related to the particular coset representative that however breaks the

explicit gauge invariance of the theory. Then we will show that in order to restore this

gauge invariance we have to restrict to the case when the world-sheet fields obey periodic

boundary conditions.

Let us be more explicit. We will see that the configuration of the pure spinor string in

AdS5 × S5 background is labelled in general by 3 conserved angular momenta (J1, J2, J3).

1For review of pure spinor formalism in superstring theory, see [42 – 46].
2Check of the one-loop conformal invariance of pure spinor string in general background was performed

in [51, 49].
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These angular momenta depend on the deformation parameters γi through

νi ≡ εijkγjJk . (1.1)

These combinations are the twists that appear in the relations between the angle variables

of S5 and the γi-deformed sphere. We will argue that for νi that are equal to integer (This

situation occurs for rational γi only) and for νi = 0 the currents of the pure spinor string

in the AdS5 ×S5 background obey the periodic boundary conditions. Alternativelly, if the

twists νi are not integer or not equal to zero then the twisted pure spinor string in the

AdS5×S5 that are images of the closed string in the deformed geometry under inverse TsT

transformations are open. On the other hand we will argue that strings with νi are equal

to integer correspond to the string theory in AdS5 × S5 background that pose the gauge

invariance of the coset and that, according to the arguments by N. Berkovits given [48] has

exact conformal invariance. Alternativelly, the twisted boundary conditions that arrise for

non-integer νi correspond to the boundary conditions that break conformal invariance of

the theory. This result confirms the analysis performed in [25].

Let us outline the structure of the paper. In next section (2) we review how the TsT

transformation is defined in the context of the non-linear sigma model. In section (3) we

introduce the action for pure spinor string in AdS5 × S5 background. Then we determine

its form using the explicit parametrisation of the coset introduced in [61]. In section (4)

we study the equations of motions for pure spinor string in the coset representation. We

prove the conservation of the BRST currents. In section (5) we perform the redefinition of

the fermions and pure spinor variables following [3].

Then in section (6) we apply TsT transformation to the five sphere and we find the

relation between the pure spinor string action in γ-deformed action and in the original

AdS5 × S5 action. Finally, in section (7) we argue for an existence of the Lax connection

for pure spinor string in the γ deformed background again following the approach given

in [3].

2. Review of the γ-deformed action

We start with the sigma model action that describes the propagation of closed string on

the background with several U(1) isometries

S = −
√

λ

4π

∫

dτdσ
√
−h[hµν∂µφi∂νφjG0

ij − εµν∂µφi∂νφjB0
ij +

+2∂µφi(hµνU0
ν,i − εµνV 0

ν,i) + L0
rest] . (2.1)

As usual we have introduced the effective string tension
√

λ
2π that is identified with the ’t

Hooft coupling in the AdS/CFT correspondence, hµν is worldsheet metric with Minkowski

signature that in conformal gauge is hµν = (−1, 1) and εµν = eµν
√
−h

, e01 = −e10 = eτσ = 1.

Next we assume that the action is invariant under the U(1) isometry transformations that

are geometrically realised as shifts of the angle variables φi , i = 1, 2, . . . , d. In other words

the string background contains the d-dimensional torus T d. The action (2.1) explicitly
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shows the dependence on φi and their coupling to the background fields G0
ij , B0

ij and

U0
ν,i, V

0
ν,i. These background fields are independent on φi but can depend on other bosonic

and fermionic string coordinates which are neutral under the U(1) isometry transforma-

tions. Finally L0
rest denotes the part of the Lagrangian that depends on other fields of the

theory.

As previous discussion suggests the action (2.1) is invariant under the constant shift

of φi

φ′i(τ, σ) = φi(τ, σ) + εi . (2.2)

The corresponding Noether currents have the form

Jµ
i = −

√
λ

2π

√
−h(hµν∂νφjG0

ji − εµν∂νφ
jB0

ij + hµνU0
ν,i − εµνV 0

ν,i) (2.3)

and obeys the equation

∂µJµ
i = 0 (2.4)

as a consequence of the equations of motion.

Now we are ready to study TsT duality of the angle variables. Let us consider two-torus

that is generated by φ1 and φ2. The TsT transformation consists T-dualizing the variable

φ1 with the further shift φ2 → φ2 + γ̃φ1 and dualizing φ1 back. The TST transformation

can be symbolically expressed as

(φ1, φ2)
TsT→ (φ̃1, φ̃2) . (2.5)

In order to find the TsT transformation of the non-linear sigma model action we proceed

following the classical works [71, 72].

Let us start with the T-duality on a circle parametrised by φ1. As the next step we

gauge the shift symmetry φ′1 = φ1 + ε1 so that ε1 is now function of τ, σ. If we require

that the action is invariant under the non-constant transformation we have to introduce

the appropriate gauge field Aµ in such a way that

∂µφ1 → (∂µφ1 + Aµ) ≡ Dµφ1 . (2.6)

At the same time we add to the action the term φ̃1εµνFµν in order to assure that the gauge

field has trivial dynamics. Then we obtain the gauge invariant action

S = −
√

λ

4π

∫

dτdσ
√
−h[hµνDµφ1Dνφ1G0

11 + 2hµνDµφ1∂νφ
aG0

1a + hµν∂µφa∂νφbG0
ab −

−εµν∂µφa∂νφbB0
ab − 2εµνDµφ1∂νφbB0

1b +

+2Dµφ1(hµνU0
ν,1 − εµνV 0

ν,1) + 2∂µφa(hµνU0
ν,a − εµνV 0

ν,a) + φ̃1εµνFµν + L0
rest] , (2.7)

where a, b = 2, . . . , d. Now thanks to the gauge invariance we can fix the gauge φ1 = 0 so

that the action above takes the form

S = −
√

λ

4π

∫

dτdσ
√
−h[hµνAµAνG

0
11 + 2hµνAµ∂νφ

aG0
1a + hµν∂µφa∂νφ

bG0
ab −

−εµν∂µφa∂νφbB0
ab − 2εµνAµ∂νφ

bB0
1b +

+2Aµ(hµνU0
ν,1 − εµνV 0

ν,1) + 2∂µφa(hµνU0
ν,a − εµνV 0

ν,a) + φ̃1εµνFµν + L0
rest] . (2.8)
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If we now integrate φ̃1 we obtain that Fµν = 0 and hence Aµ = ∂µθ. Inserting back to the

action (2.8) we obtain the original action (2.1) after identification θ = φ1. On the other

hand if we integrate out Aµ we obtain

2hµνAνG
0
11 + 2hµν∂νφaG0

1a − 2εµν∂νφ
aB0

1a + 2(hµνU0
ν,1 − εµνVν,1) − 2∂ν [ενµφ̃1] = 0

(2.9)

that implies

Aµ =
1

G0
11

(−∂µφaG0
1a + hµνενρ∂ρφ

aB0
1a − (U0

µ,1 − hµνενρV 0
ρ,1) − hµνενρ∂ρφ̃) . (2.10)

Since we have argued that Aµ can be related to the original coordinate φ1 as Aµ = ∂µφ1

the relation (2.10) implies following relation between φ1 and φ̃1

ενρ∂ρφ̃
1 = −hνρG0

11∂ρφ
1 − hνρ∂ρφ

aG0
1a + ενρ∂ρφ

aB0
1a − hνρU0

ρ,1 + ενρV 0
ρ,1 ,

φ̃a = φa . (2.11)

Now plugging the result (2.10) into the action above we obtain the action equivalent to (2.1)

S = −
√

λ

4π

∫

dτdσ
√
−h[hµν∂µφ̃i∂ν φ̃jG̃ij − εµν∂µφ̃i∂ν φ̃jB̃ij +

+2∂µφi(hµν Ũν,i − εµν Ṽν,i) + L̃rest] , (2.12)

where now

G̃11 =
1

G0
11

, G̃ab = G0
ab −

G0
a1G

0
1b − B0

1aB
0
1b

G0
11

,

G̃1a =
B0

1a

G0
11

, B̃ab = B0
ab −

G0
1aB

0
1b − B0

1aG
0
1b

G0
11

,

B̃1a =
G0

1a

G0
11

, B̃a1 = −G0
1a

G0
11

,

Ũµ,1 =
V 0

µ,1

G0
11

, Ṽµ,1 =
U0

µ,1

G0
11

,

Ũµ,a = U0
µ,a −

G0
1,aU

0
ν,1 − B0

1aV
0
µ,1

G0
11

,

Ṽµ,a = V 0
µ,a −

G0
1aV

0
µ,1 − B0

1aU
0
µ,1

G0
11

,

L̃rest = L0
rest − hµν

U0
µ,1U

0
ν,1 − V 0

µ,1V
0
ν,1

G0
11

+ εµν
U0

µ,1V
0
ν,1 − V 0

µ,1U
0
ν,1

G0
11

.

Clearly the action (2.12) has the same number of symmetries as the original one.

The next step in the definition of the TsT transformation is the the shift of the variables

φ̃a that is defined as

φ̃2 = φ̃2
s + γ̂φ̃1

s, φ̃1
s = φ̃1 ,

φ̃a
s = φ̃a , a = 3, . . . , d .

(2.13)
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If we now insert (2.13) into the action (2.12) we get

S = −
√

λ

4π

∫

dτdσ
√
−h[hµν∂µφ̃i

s∂ν φ̃j
sG̃

s
ij − εµν∂µφ̃i

s∂ν φ̃
j
sB̃

s
ij +

+2∂µφ̃i
s(h

µν Ũ s
ν,i − εµν Ṽ s

ν,i) + L̃rest] , (2.14)

where the forms of the background fields G̃s
ij , B̃s

ij, Ũ s
ν,i and Ṽ s

ν,i can be easily determined

from the action (2.12) and the shift transformation (2.13).

Finally we perform the last T-duality transformation along the direction labelled with

φ̃1
s. After this transformation we get the action in the final form

S = −
√

λ

4π

∫

dτdσ
√
−h[hµν∂µφi

F ∂νφj
F Gij − εµν∂µφi

F ∂νφ
j
F Bij +

+2∂µφi
F (hµνUν,i − εµνVν,i) + Lrest] , (2.15)

where now

Gij =
G0

ij

D
,

Gia = Gai =
G0

ia

D
+ γ̂

B0
2aG

0
1i − B0

1aG
0
2i + B0

12G
0
ia

D
,

Gab = G0
ab +

γ̂ + γ̂2B0
12

D
2(B0

23G
0
13 − B0

13G
0
23) +

+
γ̂2

D

(

G0
11(B

0
2aB

0
2b − G0

2aG
0
2b + G0

22(B
0
1aB

0
1b − G0

1aG
0
1b) + 2G0

12(G
0
2aG

0
1b − B0

1aB
0
2b)

)

(2.16)

and

B12 = −B21 =
B0

12

D
+

γ̂

D
(G0

11G
0
22 − (G0

12)
2 + (B0

12)
2) ,

Bia = −Bai =
B0

ia

D
+

γ̂

D
(G0

2aG
0
i1 − G0

i2G
0
1a + B0

12B
0
ia) ,

Uµ,i =
U0

µ,i

D
+

γ̂

D
(G0

11V
0
µ,2 − G0

2iV
0
µ,1 + B0

12U
0
µ,i) ,

Vµ,i =
V 0

µ,i

D
+

γ̂

D
(B0

12V
0
µ,i + G0

1iU
0
µ,2 − G0

2iU
0
µ,1) ,

Uµ,a = U0
µ,a +

(γ̂ + γ̂2B0
12)

D
(εijG0

iaV
0
µ,j − εijB0

iaU
0
µ,j) +

+
γ̂2

D
(εijU0

µ,i(G
0
2aG

0
1j − G0

1aG
0
2j) + εijV 0

µ,i(−B0
2aG

0
1j + B0

1aG
0
2j)) ,

Vµ,a = V 0
µ,a +

(γ̂ + γ̂2B0
12)

D
(εijG0

i3U
0
µ,j − εijB0

iaV
0
µ,j) +

+
γ̂2

D
(εijV 0

µ,i(G
0
2aG

0
1j − G0

1aG
0
2j) + εijU0

µ,i(−B0
2aG

0
1j + B0

1aG
0
2j)) ,

Lrest = L0
rest +

(γ̂ + γ̂2B0
12)

D
(2εij(V 0

0,iV
0
1,j − U0

0,iU
0
1,j + hµνU0

µ,iV
0
ν,j)) +

+
γ̂2

D
(G0

ijε
iiεjjhµν(V 0

µ,i
V 0

ν,j
− U0

µ,i
U0

ν,j
) + G0

ijε
iiεjjεµνU0

µi
V 0

νj
) , (2.17)
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where i, j = 1, 2 define the directions of a two-torus and the index a runs over 3, . . . , d.

The element D is given by

D = 1 + 2γ̂G0
12 + γ̂2(G0

11G
0
22 − (G0

12)
2 + (B0

12)
2) , γ̂ =

√
λγ . (2.18)

Repeating the arguments given below the first T-duality transformation we can find the

relation between between φF and φ in the form

∂µφ1
F = ∂1φ

1 − γ̂εµνhνρ∂ρφ
iGi2 + γ̂∂µφiBi2 − γ̂εµνhνρUρ2 − γ̂Vµ2 ,

∂µφ2
F = ∂µφ2 + γ̂εµνhνρ∂ρφ

iGi1 − γ̂∂µφiBi1 + γ̂εµνh
νρUρ1 + γ̂Vµ1 , i, j = 1, . . . d ,

∂µφa
F = ∂µφa , a = 3, . . . , d . (2.19)

In what follows we rename φF as φ̃ in order to have contact with [3]. Clearly the ac-

tion (2.15) has the same number of symmetries as related to the the constant shifts of the

variables φ̃. The conserved Noether currents have the form

J̃µ
i = −

√
λ

2π

√
−h(hµν∂ν φ̃

jGji − εµν∂ν φ̃jBij + hµνUν,i − εµνVν,i) . (2.20)

It is important to stress that following relations holds [2, 3]

J̃µ
i (φ̃) = Jµ

i (φ) . (2.21)

Now using (2.19), (2.21) together with (2.3) and (2.20) we obtain

∂1φ̃
1 − ∂1φ

1 = −γJτ
2 ,

∂1φ̃
2 − ∂1φ

1 = γJτ
1 ,

∂1φ̃
i − ∂1φ

i = 0 , i > 2 . (2.22)

Since we consider the closed string on the γ-deformed background the angle variables φ̃i

have to have following periodicity conditions

φ̃i(2π) − φ̃i(0) = 2πni , ni ∈ Z . (2.23)

Then integrating (2.22) we obtain the relation between the original variables

φ1(2π) − φ1(0) = 2π(n1 + γJ2) ,

φ2(2π) − φ2(0) = 2π(n2 − γJ1) , (2.24)

where

Ji =
1

2π

∫ 2π

0
dσJτ

i (σ) , (2.25)

and where Ji are constant as follows from (2.4).

Now we can also look on this problem from another point of view using the fact that

the momentum conjugate to φi coincides with Jτ
i . Therefore we can rewrite the time

component of (2.22) in the form

p̃i = pi , ∂σφ̃i − ∂σφi = −γijp
j , i, j = 1, . . . , d , (2.26)
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where γij = −γji with one nonzero component γ12 ≡ γ. It is clear that (2.26) up to twisted

boundary conditions a TsT transformation is just a simple linear canonical transformation

of the U(1) isometry variables. Then the twist is the origin of the nonequivalence of the

original and transformed theories. It is also clear that the most general multi-parameter

TsT transformed background obtained by applying TsT transformations successively, many

times when each time we pick up a new torus and a new deformation parameter is com-

pletely parametrised by the relation (2.26) with arbitrary matrix γij. Therefore background

that contains d dimensional torus admits d(d − 1)/2 -parameter TsT transformation. In

case of AdS5 the most general TsT transformation applies to the five sphere S5 (In order to

preserve an isometry of AdS5) has three independent parameters. The twisted boundary

conditions for the original angles φi in the case of the most general deformation take the

form

φi(2π) − φi(0) = 2π(ni − νi) , νi = −γikJk . (2.27)

The general three-parameter γ-deformed background is obtained by applying the TsT

transformation three times. Following [3] we express the corresponding procedure as

(φ1, φ2, φ3)
γ3→ (φ̃1, φ̃2, φ̃3)

γ1→ (
˜̃
φ1,

˜̃
φ2,

˜̃
φ3)

γ2→ (φ̌1, φ̌2, φ̌3) . (2.28)

Since under every step the corresponding Noether currents remain the same we can write

φ̃′
1 − φ′

1 = −γ3J
τ
2

˜̃
φ
′
1 − φ̃′

1 = 0 φ̌1 − ˜̃
φ
′
1 = γ2J

τ
3

φ̃′
2 − φ′

2 = γ3J
τ
1

˜̃
φ
′
2 − φ̃′

2 = −γ1J
τ
3 φ̌′

2 −
˜̃
φ
′
2 = 0

φ̃′
3 − φ′

3 = 0
˜̃
φ
′
3 − φ̃′

3 = γ1J
τ
2 φ̌′

3 −
˜̃
φ
′
3 = −γ2J

τ
1

(2.29)

From these formula’s we can find the relation between φi and φ̃i in the form

∂σφ̃i − ∂σφiεijkγjJ
τ
k , γik = −εijkγj . (2.30)

Integrating this equation and using the fact that φ̃i(2π) − φ̃i(0) = 2πni we obtain the

twisted boundary conditions for the original angles

φi(2π) − φi(0) = 2π(ni − νi) , νi = εijkγjJk . (2.31)

3. Pure spinor action in AdS5 × S5 and explicit coset representation

The pure spinor action in AdS5×S5 was introduced in [47, 48] and further studied in [55, 58].

In the covariant worldsheet description the pure spinor string action on AdS5 × S5 takes

the form

S = −
√

λ

2π

∫

dτdσ
√−ηStr[

1

2
ηµν

(

J (2)
µ J (2)

ν + J (1)
µ J (3)

ν + J (3)
µ J (1)

ν

)

+

+
εµν

4

(

J (1)
µ J (3)

ν − J (3)
µ J (1)

ν

)

] + Sghost ,

Sghost = −
√

λ

2π

∫

dτdσ
√−ηStr[wµPµν∂νλ + ŵµP̃µν∂ν λ̂ +

+NµPµνJ (0)
ν + N̂µP̃µνJ (0)

ν − 1

2
NµPµνN̂ν − 1

2
N̂µP̃µνNν ] , (3.1)
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where we have introduced the notation

J (0)
µ = (g−1∂µg)[cd]T[cd] , J (1)

µ = (g−1∂µg)αTα ,

J (2)
µ = (g−1∂µg)cTc , J (3)

µ = (g−1∂µg)α̂Tα̂ ,

wµ = wµαTα̂δαα̂ , λ = λαTα ,

Nµ = −{wµ, λ} − N cd
µ T[cd] + N c′d′

µ T[c′d′] ,

ŵµ = ŵµα̂Tαδα̂α , λ̂ = λ̂α̂Tα̂ ,

N̂µ = −
{

ŵµ, λ̂
}

= −N̂ cd
µ T[cd] + N̂ c′d′

µ T[c′d′] .

(3.2)

We also work with the flat worldsheet metric where hµν = ηµν = diag(−1, 1) and where we

have also defined

Pµν = (ηµν − εµν) , P̃µν = (ηµν + εµν) , εµν eµν

√−η
, e01 = −e10 = 1 . (3.3)

In what follows we work in coordinates x0 = τ, x1 = σ where σ ∈ (0, 2π).

An element M of the superalgebra su(2, 2|4) is given by a 8 × 8 matrix that can be

written in terms of 4 × 4 blocks as

M =

(

A X

Y D

)

. (3.4)

The superalgebra su(2, 2|4) is singled out by requiring that M has to have zero supertrace

StrM = TrA − TrD = 0 and to satisfy the following reality condition

HM + M †H = 0 . (3.5)

The choice of the hermitian matrix H is not unique and we choose H to be of the diagonal

form

H =

(

Σ 0

0 1

)

. (3.6)

Then (3.5) and (3.6) imply

D = −D† , ΣA = −A†Σ , Y = −X†Σ , (3.7)

where

Σ =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











. (3.8)

The algebra su(2, 2|4) also contains the u(1) generator iI where I is identity matrix of the

corresponding dimension. The superalgebra psu(2, 2|4) is defined as the quotient algebra

of su(2, 2|4) over this u(1) factor; it has no realisation in terms of 8 × 8 matrices.

The essential feature of the superalgebra su(2, 2|4) is that it admits a Z4 automorphism

Ω such that the condition Ω(H) = H determines the maximal subgroup to be SO(4, 1) ×

– 9 –



J
H
E
P
0
3
(
2
0
0
7
)
0
3
3

SO(5) that leads to the definition of the coset for the sigma model. The Z4 automorphism

Ω takes an element of psu(2, 2|4) to another G → Ω(G) such that

Ω(G) =

(

KAT K −KY T K

KXT K KBTK

)

, K =











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











. (3.9)

Since Ω4 = 1 the eigenvalues of Ω are ip , p = 0, 1, 2, 3. Therefore we can decompose the

superalgebra G as

G = H0 ⊕H1 ⊕H2 ⊕H3 , (3.10)

where Hp denotes the eigenspace of Ω such that if H ∈ Hp then

Ω(H) = ipH . (3.11)

Explicitly, any matrix M of su(2, 2|4) can be decomposed into the sum

M = M (0) + M (1) + M (2) + M (3) , (3.12)

where

M (0) =
1

4
(M + Ω(M) + Ω2(M) + Ω3(M)) =

1

2

(

A + KAT K 0

0 D + KDTK

)

,

M (2) =
1

4
(M − Ω(M) + Ω2(M) − Ω3(M)) =

1

2

(

A − KAT K 0

0 D − KDTK

)

,

M (1) =
1

4
(M − iΩ(M) − Ω2(M) + iΩ3(M)) =

1

2

(

0 X + iKY T K

Y − iKXT K 0

)

,

M (3) =
1

4
(M + iΩ(M) − Ω2(M) − iΩ3(M)) =

1

2

(

0 X − iKY T K

Y + iKXT K 0

)

,

(3.13)

and where Ω(M (p)) = ipM (p). We see that M (0) form so(4, 1) × so(5) subalgebra which

we wish to mod out in the coset. We also see that the matrices M (1,3) contain the odd

matrices. Splitting M into Grassman even and odd parts

M = Meven + Modd , Meven =

(

A 0

0 D

)

, Modd =

(

0 X

Y 0

)

, (3.14)

we can rewrite the expressions for M (p) in the following form

M (0) =
1

2
(Meven + K8M

T
evenK8) , M (2) =

1

2
(Meven − K8M

T
evenK8) ,

M (1) =
1

2
(Modd + iK̃8M

T
oddK8) , M (3) =

1

2
(Modd − iK̃8M

T
oddK8) , (3.15)
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where K8 and K̃8 are defined as

K8 =

(

K 0

0 K

)

, K̃8 =

(

K 0

0 −K

)

. (3.16)

The next step is to explicit choose the coset representative g. Following [3] we take the

coset parametrisation in the form

g = g(θ)g(z) . (3.17)

Here g(θ) = exp(θ), where θ is an element of psu(2, 2|4) that contains 32 fermionic degrees

of freedom. The element g(z) belongs to SU(2, 2) × SU(4) and takes following form [61]

g(z) =

(

g̃a(x) 0

0 g̃s(y)

)

, (3.18)

where

g̃a(x) = exp
1

2
(xaγa) , g̃s(y) = exp

i

2
(yaΓa) , (3.19)

where z ≡ (xa, ya) and xa parametrise the AdS5 space while ya stand for the five-sphere.

The matrices Γa, γa , a = 1, . . . , 5 are Dirac matrices for SO(5) and SO(4, 1) respectively.

These matrices obey the relations

KΓT
a K = −Γa , KγT

a K = −γa . (3.20)

Using this property of the Dirac matrices it can be easily shown that they span the orthog-

onal complements to the Lie algebras so(5) and so(4, 1) respectively3 Now with the choice

of the coset representative given in (3.17) the current takes the form

J = g−1dg = g−1(z)g−1(θ)dg(θ)g(z) + g−1(z)dg(z) . (3.21)

Since

g(θ) cosh θ + sinh θ , g−1(θ) = cosh θ − sinh θ

(3.22)

we get

g−1(θ)dg(θ) = (cosh θ − sinh θ)(d cosh θ + d sinh θ) = F + B , (3.23)

where

B ≡ cosh θd cosh θ − sinh θd sinh θ ,

F ≡ cosh θd sinh θ − sinh θd cosh θ (3.24)

are even (contain even number of θ’s) and odd (contain odd number of θ’s) element re-

spectively. With the help (3.21) and (3.23) we find that the even component of J takes

the form

Jeven = g−1(z)Bg(z) + g−1(z)dg(z) (3.25)

3For very nice discussion, see [63].
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while the odd element is equal to

Jodd = g−1(z)Fg(z) . (3.26)

As the next step we find components of the current J (i) that belongs to appropriate sub-

spaces H(i). To do this we use the relation (3.15). To present further result we define

G = g(z)K8g
t(z) =

(

ga 0

0 gs

)

, G̃ = g(z)K̃8g
t(z) =

(

ga 0

0 −gs

)

. (3.27)

As was argued in [3] the 4 × 4 matrices ga ∈ SU(2, 2) and gs ∈ SU(4) provide another

parametrisation of the five-sphere and the AdS space. On coordinates z the global sym-

metry algebra is realised non-linearly. In opposite, ga and gs carry a linear representation

of the superconformal algebra.

Now using (3.15) and (3.27) we obtain

2J (0) = Jeven + K8J
T
evenK8 = 2g−1dg + g−1(B − GBT G−1 − dGG−1)g

(3.28)

using the fact that K−1
8 = −K8 , K̃−1

8 = −K̃−1
8 . In (3.28) g means g(z) and in the following

we use this notation. In the same way we obtain

2J (2) = Jeven − K8J
T
evenK8 = g−1(B + GBT G−1 + dGG−1)g (3.29)

and

2J (1) = Jodd + iK̃8J
T
oddK8 = g−1(F − iG̃F T G−1)g ,

2J (3) = Jodd − iK̃8J
T
oddK8 = g−1(F + iG̃F T G−1)g .

(3.30)

With the help of (3.28), (3.29) and (3.30) we can write the pure spinor Lagrangian density

in the form

L = −
√

λ

8π
Str[

1

2
ηµν(Bµ + GBT

µ G−1 + ∂µGG−1)(Bν + GBT
ν G−1 + ∂νGG−1) +

+ηµν(Fµ − iG̃F T
µ G−1)(Fν + iG̃F T

ν G−1) +
εµν

2
(Fµ − iG̃F T

µ G−1)(Fν + iG̃F T
ν G−1)]

−
√

λ

2π
Str(wµPµν∂νλ + ŵµP̃µν∂ν λ̂ − NµPµνN̂ν +

+
1

2
NµPµν(2g−1∂νg + g−1(Bν − GBT

ν G−1 − ∂νGG−1)g) +

+
1

2
N̂µP̃µν(2g−1∂νg + g−1(Bν − GBT

ν G−1 − ∂νGG−1)g)) . (3.31)

By using the cyclic property of the supertrace the action can be further simplified using

the fact that

StrG̃F T
µ G−1G̃F T

ν G−1 = StrF T
µ

(

1 0

0 −1

)

F T
ν

(

1 0

0 −1

)

= StrFµFν , (3.32)
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where we have used

G−1G̃ =

(

1 0

0 −1

)

(3.33)

and also the fact that that F is off-diagonal matrix. Then we can simplify the action (3.31)

as

L = −
√

λ

8π
Str[

1

2
ηµν(Bµ + GBT

µ G−1 + ∂µGG−1)(Bν + GBT
ν G−1 + ∂νGG−1) +

+2ηµν(FµFν − iG̃F T
µ G−1Fν) + εµν(FµFν − iG̃F T

µ G−1Fν)] −

−
√

λ

2π
Str[wµPµν∂νλ + ŵµP̃µν∂ν λ̂ − NµPµνN̂ν +

+
1

2
NµPµν(2g−1∂νg + g−1(Bν − GBT

ν G−1 − ∂νGG−1)g) +

+
1

2
N̂µP̃µν(2g−1∂νg + g−1(Bν − GBT

ν G−1 − ∂νGG−1)g)] . (3.34)

We see that the pure spinor parts of the action is rather complicated. In fact, the presence

of the matrix g makes the analysis difficult since the symmetries do not act on it linearly.

To resolve this problem we begin with the observation that

Str(NµPµνJ (0)
ν ) − Str({wµ, λ}PµνJ (0)

ν ) = −PµνStr(wµ(λJ (0)
ν − J (0)

ν λ)) (3.35)

= StrwµPµν
[

J (0)
ν , λ

]

,

where we have used the fact that the off-diagonal blocks of the matrices w, λ contain

Grassman even elements. In the same we can proceed with N̂ and then we can rewrite the

pure spinor Lagrangian into the form

Lpure = −
√

λ

2π
Str(wµPµν∇νλ + ŵµP̃µν∇ν λ̂ − NµPµνN̂ν) , (3.36)

where

∇µX = ∂µX + [J (0)
µ ,X] . (3.37)

The form of the current J (0) given in (3.28) suggests the following field redefinition of the

ghost variables

λ = g−1λg , λ̂ = g−1λ̂g ,

wµ = g−1wµg , ŵµ = g−1ŵµg .
(3.38)

First of all we have to check that the new pure spinors matrices λ , λ̂ still belong to

M (1),M (3) respectively. To do this we use the fact that λ has schematically following

form

λ =

(

0 Xλ

Yλ 0

)

(3.39)

and hence

λ = gλg−1 =

(

0 g̃−1
a Xλg̃s

g̃−1
s Yλg̃a 0

)

, (3.40)
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where we have used the explicit form of the coset element given in (3.18). Then using the

definition of Ω given in (3.9) we get

Ω(λ) =

(

0 −K(g̃−1
s Yλg̃a)

T K

K(g̃−1
a Xλg̃s)

T K 0

)

=

(

g̃a 0

0 g̃s

)(

0 −KY T
λ K

KXT
λ K 0

)(

g̃−1
a 0

0 g̃−1
s

)

= gΩ(λ)g−1 . (3.41)

Since Ω(λ) = iλ the equation above implies

Ω(λ) = igλg−1 = iλ (3.42)

and hence λ belongs to M (1) as well. In the same way we can show that λ̂ belongs to M (3)

and hence the field redefinition (3.40) is well defined.

It is easy to see that if the original pure spinors λ, λ̂ obey the pure spinor conditions

then λ, λ̂ obey these conditions as well. More precisely, note that the pure spinor condition

for λ can be written as

{λ, λ}λαλβ {Tα, Tβ}λαλβf
c
αβTc ∼ λαγ

c
αβλβTc = 0 . (3.43)

Then if we insert (3.38) into (3.43) we easily get

{

g−1λg, g−1λg
}

= g−1
{

λ, λ
}

g = 0 ⇒
{

λ, λ
}

= 0 (3.44)

so that λ obey the pure spinor constraint as well. It is clear that the same analysis can be

performed for λ̂ as well and we obtain that λ̂ obey the pure spinor conditions. Now with

the help of (3.38) we obtain

wµPµν∇νλ = g−1wµPµν(∂νλ +
1

2

[

(B − GBT G−1 − dGG−1), λ
]

)g

ŵµP̃µν∇ν λ̂ = g−1ŵµP̃µν(∂ν λ̂ +
1

2

[

(B − GBT G−1 − dGG−1), λ̂
]

)g

Nµ = g−1Nµg ,

N̂µ = g−1N̂µg . (3.45)

To simplify further analysis we introduce following notation

J (0) = g−1dg +
1

2
[g−1(B − GBT G−1 − dGG−1)g]g−1dg + g−1J(0)g ,

J (2) =
1

2
[g−1(B + GBT G−1 + dGG−1)g] = g−1J(2)g ,

J (1) =
1

2
g−1(F − iG̃F T G−1)g = g−1J(1)g ,

J (3) =
1

2
g−1(F + iG̃F T G−1)g = g−1J(3)g . (3.46)
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The we can write the pure spinor action in the same form as in (3.1)

S = −
√

λ

2π

∫

dτdσ
√−ηStr[

1

2
ηµν

(

J(2)
µ J(2)

ν + J(1)
µ J(3)

ν + J(3)
µ J(1)

ν

)

+

+
εµν

4

(

J(1)
µ J(3)

ν − J(3)
µ J(1)

ν

)

] + Sghost ,

Sghost = −
√

λ

2π

∫

dτdσ
√−ηStr[wµPµν∂νλ + ŵµP̃µν∂ν λ̂ +

+NµPµνJ(0)
ν + N̂µP̃µνJ(0)

ν − 1

2
NµPµνN̂ν − 1

2
N̂µP̃µνNν ] . (3.47)

However there is one crucial difference between the action (3.47) and (3.1). Due to the

explicit form of the coset representative (3.17) it is clear that the currents J(i) do not

transform under the gauge transformations as the original one J (i). More precisely, the

original action (3.1) was invariant under the gauge transformations

J ′ = h−1Jh + h−1dh , λ′ = h−1λh , λ̂′ = h−1λ̂h ,

w′
µ = h−1wµh , ŵ′

µ = h−1ŵµh , (3.48)

where h belongs to SO(4, 1) × SO(5). Clearly the redefined currents J and ghost variables

do not transform in the same way as (3.48). This follows from the fact that the choice

of given coset representative effectively fixes given gauge symmetry. For that reason the

action (3.47) does not possess the gauge symmetry of the original action.

We conclude this section with the brief discussion of the properties of the matrix G.

With the certain choice of the matrix K the matrix gs parameterising S5 can be written

as follows

gs =











0 u3 u1 u2

−u3 0 u∗
2 −u∗

1

−u1 −u∗
2 0 u∗

3

−u2 u∗
1 −u∗

3 0











. (3.49)

This is unitary matrix g†sgs = 1 on the condition that the three complex coordinates ui

obey the constraint |u1|2 + |u2|2 + |u3|2 = 1. A similar parameterisation of the AdS5 space

is given by

ga =











0 v3 v1 v2

−v3 0 −v∗2 v∗1
−v1 v∗2 0 v∗3
−v2 −v∗1 −v∗3 0











, (3.50)

where now ga ∈ SU(2, 2) so that it obeys g†aEga = E where E = diag(1, 1,−1,−1) provided

the complex numbers vi satisfy the constraint |v1|2 + |v2|2 − |v3|2 = −1.

4. Equation of motions and BRST invariance

Our goal is to express the equations of motion that follow from the action (3.1) in terms

of redefined ghost fields (3.38) and of the currents J(i) defined in (3.46). We firstly write
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the equations of motion that arise from (3.1). These equations of motion were determined

previously in [47] and their covariant formulation was also given in [55]

P̃µν∇µJ (3)
ν + [J (3)

ν , Nµ]Pµν + [J (3)
ν , N̂µ]P̃µν = 0 ,

Pµν∇µJ (1)
ν + [J (1)

ν , Nµ]Pµν + [J (1)
ν , N̂µ]P̃µν = 0 ,

Pµν∇µJ (2)
ν − εµν [J (1)

µ , J (1)
ν ] + [J (2)

ν , Nµ]Pµν + [J (2)
ν , N̂µ]P̃µν = 0 ,

P̃µν∇µJ (2)
ν + εµν [J (3)

µ , J (3)
ν ] + [J (2)

ν , Nµ]Pµν + [J (2)
ν , N̂µ]P̃µν = 0 ,

Pµν∇νλ + Pµν [λ, N̂ν ] = 0 ,

P̃µν∇ν λ̂ + P̃µν [λ̂,Nν ] = 0 , (4.1)

where

∇νJ
(i)
µ = ∂νJ

(i)
µ + [J (0)

ν , J (i)
µ ] ,

∇µλ = ∂µλ +
[

J (0)
µ , λ

]

. (4.2)

Now we rewrite these equations of motion using the form of the currents given in (3.46)

and we obtain

∇µJ (i)
ν = g−1(∂µJ

(i)
ν +

[

J(0)
µ , J (i)

ν

]

)g ≡ g−1∇νJ (i)
µ g , i = 1, 2, 3 ,

∇µλ = g−1∇µλg , ∇µλ̂ = g−1∇µλ̂g . (4.3)

Then it is easy to see that the equations of motion given above take the form

P̃µν∇µJ
(3)
ν + [J(3)

ν ,Nµ]Pµν + [J(3)
ν , N̂µ]P̃µν = 0 , (4.4)

Pµν∇µJ
(1)
ν + [J(1)

ν ,Nµ]Pµν + [J(1)
ν , N̂µ]P̃µν = 0 , (4.5)

Pµν∇µJ
(2)
ν − εµν [J(1)

µ ,J(1)
ν ] + [J(2)

ν ,Nµ]Pµν + [J(2)
ν , N̂µ]P̃µν = 0 , (4.6)

P̃µν∇µJ
(2)
ν + εµν [J(3)

µ ,J(3)
ν ] + [J(2)

ν ,Nµ]Pµν + [J(2)
ν , N̂µ]P̃µν = 0 , (4.7)

Pµν∇νλ + Pµν [λ, N̂ν ] = 0 , (4.8)

P̃µν∇ν λ̂ + P̃µν [λ̂,Nν ] = 0 . (4.9)

The fact that in the new variables the equations of motion have the same form as the

equations given in (4.1) has an important consequence for the conservation of the BRST

currents. These currents are defined as [47]

jµ
R = Str(λ̂J (1)

ν P̃νµ) , jµ
L = Str(λJ (3)

ν Pνµ) (4.10)

and they are conserved

∂µjµ
R,L = 0 . (4.11)

With the help of (3.38) and (3.46) we can rewrite (4.10) into the form

jµ
R = Str(λ̂J(1)

ν P̃νµ) , jµ
L = Str(λJ(3)

ν Pνµ) . (4.12)
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Now we will show that these currents are conserved as well. To do this we will calculate

∂µjµ
L using the equations of motion (4.4) and (4.8)

∂µjµ
L = Str(Pνµ∂µλJ(3)

ν ) + Str(λP̃µν∂µJ
(3)
ν )

= Str((−Pνµ[λ̂, N̂µ] − Pµν [J(0)
µ , λ])J(3)

ν ) +

+Str(λ(−P̃µν [J(0)
µ ,J(3)

ν ] − [J(3)
ν ,Nµ]Pµν − [J(3)

ν , N̂µ]P̃µν)

= −Str(J(3)
ν

[

Nµ, λ
]

)Pµν (4.13)

that vanishes thanks to the pure spinor constraint. In the same way we can prove the

conservation of jµ
R. The existence of two conserved BRST currents (4.12) imply that we

can define two BRST charges

QL =
1

2π

∫ 2π

0
dσj0

L , QR =
1

2π

∫ 2π

0
dσj0

R . (4.14)

Let us now calculate their time derivative

dQL

dτ
= − 1

2π

∫ 2π

0
dσ∂σj1

L = − 1

2π
(j1

L(2π) − j1
L(0)) ,

dQR

dτ
= − 1

2π

∫ 2π

0
dσ∂σj1

R = − 1

2π
(j1

R(2π) − j1
R(0)) , (4.15)

where we have used (4.11). For ordinary closed string we demand that the world-sheet

fields are periodic

j1
L,R(τ, σ + 2π) = j1

L,R(τ, σ) . (4.16)

Then (4.15) implies that QL, QR are time-independent. Even if these results are well known

we reviewed here since as we will see in the next section the world-volume modes do not

have to be periodic and hence the existence of the conserved BRST charges is not generally

obvious.

5. Fermions and pure spinors twisting

The original fermions and pure spinors transform under isometries of the five sphere. To

apply the approach presented in section (2) we need to redefine the fermions and pure

spinor in such a way that they become neutral under the isometries. The twisted boundary

conditions for the original angles of AdS5 ×S5 will induce twisted boundary conditions for

the original charged fermions and pure spinors of AdS5 × S5.

To proceed we will closely follow [61] since it turns out that the approach presented

here can be easily extended to the pure spinor string as well. We begin with the study

of the invariance of the Lagrangian under the abelian subalgebra of the superconformal

group. The bosonic symmetry algebra SO(4, 2) × SO(6) has six Cartan generators: three

for SO(4, 2) and three for SO(6). If we introduce the polar representation

ui = rie
iφi , vi = ρie

iψi , (5.1)
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where ri, ρi are real, then the six commuting isometries are realised as constant shift of the

angle variables

φ′
i = φi + εi , ψ′

i = ψi + ε̃i . (5.2)

It is remarkable that matrices gs and ga enjoy the following factorisation property [2, 65, 66]

gs(r, φ) = M(φ)ĝs(r)M(φ) ,

ga(r, ψ) = M(ψ)ĝa(ρ)M(ψ) ,

(5.3)

where

ĝs(r) =











0 r3 r1 r2

−r3 0 r2 −r1

−r1 −r2 0 −r3

−r2 r1 r3 0











, ĝa(r) =











0 ρ3 ρ1 ρ2

−ρ3 0 ρ2 −ρ1

−ρ1 −ρ2 0 ρ3

−ρ2 ρ1 −ρ3 0











, (5.4)

and where M(φ) = e
i
2
Φ with Φ = diag(Φ1, . . . ,Φ4) where Φi are equal to

Φ1 = φ1 + φ2 + φ3 ,

Φ2 = −φ1 − φ2 + φ3 ,

Φ3 = φ1 − φ2 − φ3 ,

Φ4 = −φ1 + φ2 − φ3 .

(5.5)

Note that in this case the matrix G, G̃ can be written as

G = MĜM , Ĝ =

(

ĝa 0

0 ĝs

)

, (5.6)

G̃ = M ˆ̃GM , ˆ̃G =

(

ĝa 0

0 −ĝs

)

, (5.7)

where

M =

(

M(ψ) 0

0 M(φ)

)

. (5.8)

If we insert (5.6) and (5.7) to the action (3.47) we obtain that the action explicitly depends

on Φ. This fact precludes to perform the analysis given in section (2). In order to obtain

the sigma model when the fermions and pure spinors are spectators we have to perform

their redefinition.

In order to find the fermionic and pure spinor redefinition note that fermions and pure

spinor matrices can be written as

θ =

(

0 Xθ

Yθ 0

)

, λ =

(

0 Xλ

Yλ 0

)

, λ̂ =

(

0 Xλ̂

Yλ̂ 0

)

, (5.9)
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where in the case of λ, λ̂ the off-diagonal matrices Xλ, Yλ,Xλ̂, Yλ̂ are bosonic. We must

however stress that λ, λ̂ are not odd matrices of su(2, 2|4) superalgebra. This follows from

the fact that they are defined as λ = λαTα where crucially λα is complex number while for

an element from su(2, 2|4) this parameter should be real. In fact it can be easily seen that

if λα were real the solution of the pure spinor constraint would be trivial.

In case of fermions we perform following rescaling

Xθ = M(ψ)X̂M(φ)−1 , Yθ = M(φ)X̂M(ψ)−1 . (5.10)

Then it follows that

g(θ) = Mĝ(θ̂)M−1 , (5.11)

where we have defined

M ≡
(

M(ψ) 0

0 M(φ)

)

, (5.12)

and where the fermions θ̂ are uncharged under all U(1)s.

Using this redefinition the currents (3.46) take the form

J(0) =
1

2
M(B̂ − ĜB̂T Ĝ−1 − dĜĜ−1 − i

2
dΦ − i

2
ĜdΦĜ−1)M−1 ≡ M J̃(0)M−1 ,

J(2) =
1

2
M(B̂ + ĜB̂T Ĝ−1 +

i

2
dΦ +

i

2
ĜdΦĜ−1)M−1 ≡ M J̃(2)M−1 ,

J(1) =
1

2
M [F̂ − ˆ̃GF̂ T Ĝ]M−1 ≡ M J̃(1)M−1 ,

J(3) = M [F̂ + i ˆ̃GF̂ T Ĝ−1]M−1 ≡ M J̃(3)M−1 (5.13)

and consequently the matter part of the pure spinor action takes the form

S = −
√

λ

2π

∫

dτdσ
√−ηStr[

1

2
ηµν

(

J̃(2)
µ J̃(2)

ν + J̃(1)
µ J̃(3)

ν + J̃(3)
µ J̃(1)

ν

)

+

+
εµν

4

(

J̃(1)
µ J̃(3)

ν − J̃(3)
µ J̃(1)

ν

)

] . (5.14)

It is important that the action (5.14) depends on Φ through the expression of dΦ only

and hence it is invariant under the shift Φ′ = Φ + ε. In other words matter part of the

pure spinor string in the AdS5 × S5 background takes the form of the sigma model action

studied in the section (2) and consequently the TsT transformation can be performed.

In the similar way as in case of fermions we propose the following redefinition of the

ghost variables

λ = Mλ̃M−1 , λ̂ = M
˜̂
λM−1 (5.15)

and

w̃µ = MwµM−1 , ˜̂wµ = MŵµM−1 , (5.16)

where λ̃,
˜̂
λ, w̃µ, ˜̂wµ are not charged under U(1)’s isometries. Note that (5.15) and (5.16)

imply that Ñµ,
˜̂
Nµ are neutral under U(1)′s isometries as well. Further, if we insert (5.15)

into the pure spinor constraint we obtain
{

Mλ̃M−1,Mλ̃M−1
}

M
{

λ̃, λ̃
}

M−1 = 0 (5.17)

– 19 –



J
H
E
P
0
3
(
2
0
0
7
)
0
3
3

and hence λ̃ obeys the pure spinor constraints. It is also clear that this analysis holds for
˜̂
λ as well. Finally we determine the form of ∇µλ

∇µλ = ∂µλ +
[

J(0)
µ , λ

]

= M(∂µλ̃ +
i

2
[∂µΦ, λ̃] + [J̃(0)

µ , λ̃])M−1 ≡ M∇̃µλ̃M−1 (5.18)

using

dλ = M

(

dλ̃ +
i

2
dΦλ̃ − i

2
λ̃dΦ

)

M−1 . (5.19)

Clearly the same equation holds for λ̂, ŵµ. In summary we obtain following form of the

pure spinor Lagrangian from (3.47)

Lpure = −
√

λ

2
Str[w̃µPµν∇̃ν λ̃ + ˜̂wµP̃µν∇̃ν

˜̂
λ − ÑµP̃µν ˜̂

Nν ] . (5.20)

We see that (5.20) depends on Φ through dΦ only and hence the analysis performed in

section (2) can be applied for pure spinor action as well.

It will be useful to express the equations of motion for J and ghosts λ, λ̂, w, ŵ that

were given in (4.4), (4.5), (4.6), (4.7), (4.8) and (4.9) in terms of the variables defined

in (5.13), (5.15) and (5.16). As the first step we express the covariant derivative ∇J(i)

using the redefined currents (5.13)

∇J(i) = M(dJ̃(i) +
i

2

[

dΦ, J̃(i)
]

+
[

J̃(0), J̃(i)
]

)M−1 ≡ M∇̃J̃(i)M−1 , (5.21)

where we have introduced the derivative ∇̃ that by definition depends on J̃(0) and on the

derivative of Φ. Then with the help of (5.13), (5.15), (5.16) and (5.21) we can determine

from (4.4), (4.5), (4.6), (4.7), (4.8) and (4.9) the equations of motion for J̃, λ̃,
˜̂
λ, w̃µ and ˜̂wµ

in the form

P̃µν∇̃µJ̃
(3)
ν + [J̃(3)

ν , Ñµ]Pµν + [J̃(3)
ν ,

˜̂
Nµ]P̃µν = 0 ,

Pµν∇̃µJ̃
(1)
ν + [J̃(1)

ν , Ñµ]Pµν + [J̃(1)
ν ,

˜̂
Nµ]P̃µν = 0 ,

Pµν∇̃µJ̃
(2)
ν − εµν [J̃(1)

µ , J̃(1)
ν ] + [J̃(2)

ν , Ñµ]Pµν + [J̃(2)
ν ,

˜̂
Nµ]P̃µν = 0 ,

P̃µν∇̃µJ̃
(2)
ν + εµν [J̃(3)

µ , J̃(3)
ν ] + [J̃(2)

ν , Ñµ]Pµν + [J̃(2)
ν ,

˜̂
Nµ]P̃µν = 0 ,

Pµν∇̃ν λ̃ + Pµν [λ̃,
˜̂
Nν ] = 0 ,

P̃µν∇̃ν
˜̂
λ + P̃µν [

˜̂
λ, Ñν ] = 0 . (5.22)

Finally we will discuss the conservation of the BRST currents given in (4.12). With the

help of (5.13) and (5.15) it is easy to see that they are equal to

j̃µ
R = Str(

˜̂
λJ̃(1)

ν P̃νµ) , j̃µ
L = Str(λ̃J̃(3)

ν Pνµ) (5.23)

and that they are again conserved as a consequence of the equations of motion (5.22).

Consequently the time derivative of the BRST charges is equal to

dQL

dτ
= − 1

2π
(j̃1

L(2π) − j̃1
L(0)) ,

dQR

dτ
= − 1

2π
(j̃1

R(2π) − j̃1
R(0)) . (5.24)
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6. TsT transformation on the five sphere

Even if the general analysis performed above is valid for the TsT transformation in the AdS5

space as well we restrict to the TsT transformation applied to the five-sphere, following [61].

This restriction implies that we do need to impose that fermions and pure spinors are

neutral under isometries of AdS5. Then we can take M(ψ) = 1 and hence we obtain that

the matrix M takes the form

M =

(

1 0

0 M(φ)

)

. (6.1)

In order to determine the twisted boundary conditions for fermions and pure spinors we

have to take into account that the redefined fermions and the pure spinors do not transform

under the TsT transformations. Therefore the original charged fermions in AdS5 ×S5 and

pure spinors satisfy the twisted boundary conditions. We find these boundary conditions

using the relation between θ̂ and θ and the twisted boundary condition for angle φi that

has impact on the matrix M since

φi(2π) = φi(0) + 2π(ni − νi) , νi = εijkγjJk (6.2)

or equivalently

Φ1(2π) = Φ1(0) + 2π(n1 + n2 + n3 − ν1 − ν2 − ν3) ≡ Φ1(0) − 2πΛ1 ,

Φ2(2π) = Φ2(0) + 2π(−n1 − n2 + n3 + ν1 + ν2 − ν3) ≡ Φ2(0) − 2πΛ2 ,

Φ3(2π) = Φ3(0) + 2π(n1 − n2 − n3 − ν1 + ν2 + ν3) ≡ Φ3(0) − 2πΛ3 ,

Φ4(2π) = Φ4(0) + 2π(−n1 + n2 − n3 + ν1 − ν2 + ν3) ≡ Φ4(0) − 2πΛ4 . (6.3)

Using (6.3) we easily obtain

M(Φ(2π)) =











e−iπΛ1 0 0 0

0 e−iπΛ2 0 0

0 0 e−iπΛ3 0

0 0 0 e−iπΛ4





















eiΦ1(0) 0 0 0

0 eiΦ2(0) 0 0

0 0 eiΦ3(0) 0

0 0 0 eiΦ4(0)











(6.4)

or in compact notation

M(Φ(2π)) = e−iπΛM(Φ(0)) , (6.5)

where Λ = diag(Λ1,Λ2,Λ3,Λ4). Then we have

g(θ)(2π) = M(2π)g(θ̂)(2π)M−1(2π)

=

(

1 0

0 e−iπΛ

)

M(Φ(0))g(θ̂(0))M−1(Φ(0))

(

1 0

0 eiπΛ

)

=

(

1 0

0 e−iπΛ

)

g(θ)(0)

(

1 0

0 eiπΛ

)

(6.6)

using the fact that θ̂ do not transform under TsT duality and hence they are the same in

TsT dual background with standard periodicity θ̂(2π) = θ̂(0).
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Now we would like to explain carefully our calculations. 4 We have derived the pure

spinor action in the AdS5×S5 given in (5.14) and (5.20) that by construction is manifestly

invariant under the isometry of the background parametrised by Φ. Now let us suppose

that we have pure spinor action that describes closed string in the γ-deformed background.

Since the γ-deformed background can be derived from the original AdS5 × S5 by sequence

of the TsT transformations the analysis performed in section (2) suggests that this action

has the same functional form as the action given in (5.14) and (5.20). Let us denote the

corresponding Lagrangian as L(J̃0, λ̃,
˜̂
λ) where superscripts on J̃ mean that these currents

explicitly depend on the γ-deformed background. According to the arguments given in

the section (2) this Lagrangian can be mapped by sequence of TsT transformations to

the Lagrangian L(J̃, λ̃,
˜̂
λ) where now the angle variables obey twisted boundary conditions

according to (6.5). On the other hand the fermionic θ̂ and ghost variables λ̃,
˜̂
λ, w̃, ˜̂w have

periodic boundary conditions since they are neutral under U(1)′s isometries. Then the

form of the currents J̃ given in (5.13) imply that they are periodic since they depend on

r, ρ and θ̂ and as we argued above these modes are periodic. It is also easy to see that

dΦ(2π) = dΦ(0). Explicitly, we have

J̃(i)(2π) = J̃(i)(0) , i = 0, 1, 2, 3 ,

λ̃(2π) = λ̃(0) ,
˜̂
λ(2π) =

˜̂
λ(0) ,

w̃µ(2π) = w̃µ(0) , ˜̂wµ(2π) = ˜̂wµ(0) .

(6.7)

These boundary conditions immediately show that the conserved BRST currents given

in (5.23) imply the existence of the time-independent BRST charges as follows from (5.24).

On the other hand we can take one step further and study the pure spinor action

expressed with the variables J, λ, λ̂. These variables now obey twisted boundary conditions

as follows from (5.13), (5.15) and (5.16)

J(i)(2π) =

(

1 0

0 e−iπΛ

)

J(i)(0)

(

1 0

0 eiπΛ

)

, i = 0, 1, 2, 3

λ(2π) =

(

1 0

0 e−iπΛ

)

λ(0)

(

1 0

0 eiπΛ

)

, λ̂(2π) =

(

1 0

0 e−iπΛ

)

λ̂(0)

(

1 0

0 eiπΛ

)

,

wµ(2π) =

(

1 0

0 e−iπΛ

)

wµ(0)

(

1 0

0 eiπΛ

)

, ŵµ(2π) =

(

1 0

0 e−iπΛ

)

ŵµ(0)

(

1 0

0 eiπΛ

)

.

(6.8)

We again see that these boundary conditions immediately show that the conserved BRST

currents (4.12) are periodic and hence they are two time-independent BRST charges as

follows from (4.15). In other words we have shown that classically the pure spinor string

is well defined even in the case when the world-volume fields obey the twisted boundary

conditions. On one hand the power of pure spinor formalism is that it allows to prove

exact conformal invariance of the pure spinor string in AdS5 × S5 background [48] and

arguments given there crucially depend on the gauge invariance of the pure spinor string

4For simplicity we restrict to the case of string with zero winding numbers ni = 0.
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with respect to subgroup SO(4, 1)×SO(5). On the other hand the form of the action (3.47)

explicitly depends on the coset representative that corresponds to the fixing of the gauge

SO(4, 1) × SO(5). Consequently the action (3.47) is not suitable for the analysis of the

general properties of the pure spinor sigma model with twisted boundary conditions.

To find such a formulation we would like to express the theory where the fundamental

fields obey the twisted boundary conditions in terms of the original currents J and ghost

variables that appear in the action (3.1) and that obey some form of the twisted boundary

conditions:

J(2π) = N(Λ)J(0)N−1(Λ) ,

λ(2π) = N(Λ)λ(0)N−1(Λ) , λ̂(2π) = N(Λ)λ̂(0)N−1(Λ) ,

wµ(2π) = N(Λ)wµ(0)N−1(Λ) , ŵµ(2π) = N(Λ)ŵµ(0)N−1(Λ) , (6.9)

for some matrix N that depends on Λ only. If we were able to find such a formulation then

we would get the original action (3.1) with the explicit gauge invariance but where now

the world-volume fields obey the twisted boundary conditions (6.9). Since the algebraic

renormalisation arguments given [48] (see also [54] are sensitive to the UV properties of

the theory we could then argue that (3.1) with fields obeying the twisted boundary condi-

tions (6.9) defines exact quantum field theory. It turns out however that it is not possible

to find such a form of the boundary conditions.

To be more precise we try to find the boundary conditions of the original currents

J (i) , i = 1, 2, 3 and ghosts λ, λ̂ using the relations (3.38) and (3.46). These relations imply

that J, λ, λ̂ explicitly depend on g that has the form

g =

(

g̃a 0

0 g̃s

)

(6.10)

where g̃a(2π) = g̃(0) as follows from the fact that ga parametrises AdS5. More difficult

problem is to find the boundary condition for gs. Recall that this group element has the

form

g̃s = exp

(

i

2
yaΓa

)

, (6.11)

where ya parametrise the five-sphere and Γa, a = 1, . . . , 5 are the Dirac matrices for SO(5).

The variables ya are related to ρ, φ given in (5.4) as

y1 =
1

2

|y|
sin |y|(u1 − u∗

1) , y2 = −1

2

|y|
sin |y|(u2 + u∗

2) ,

y3 =
1

2

|y|
sin |y|(u2 − u∗

2) , y4 = −1

2

|y|
sin |y|(u1 + u∗

1) ,

y5 =
1

2

|y|
sin |y|(u3 − u∗

3) , |y| = − sin−1

(

u3 + u∗
3

2

)

,

|y|2 = y2
1 + y2

2 + y2
3 + y2

4 + y2
5 . (6.12)

Then using the fact that gs obeys following boundary conditions

gs(2π) = e−iπΛgs(0)e
−iπΛ (6.13)
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we easily find the twisted boundary conditions for ui

u1(2π) = e−iπ(Λ1+Λ3)u1(0) ,

u2(2π) = e−iπ(Λ1+Λ4)u2(0) ,

u3(2π) = e−iπ(Λ1+Λ2)u3(0) . (6.14)

Using the boundary conditions for ui given above we can easily determine the boundary

condition for |y| given in (6.12)

|y|(2π) = sin−1

[

2 sin |y|(0) cos(π(Λ1 + Λ2) + 2i sin(π(Λ1 + Λ2)
y5(0)

|y|(0)

]

. (6.15)

This result clearly demonstrates that it is not possible to find the appropriate N matrix

introduced in (6.9) for general values of Λ. This is a consequence of the fact that the global

symmetries of the coset are realised non-linearly on coordinates y.

Since we have shown that is not possible find the matrix N for general Λ it turns out

that the arguments in [48] that were based on the existence of local gauge symmetry cannot

be applied to the currents that obey twisted boundary conditions. However, looking at the

above equations we see that for νi ∈ Z, where νi is defined as

νi = εijkγjJk (6.16)

the world-sheet fields in the original AdS5 × S5 background obey the periodic boundary

conditions as well. It is interesting to compare this requirement with the analysis performed

in [25] where the significance of the solution with integer νi was stressed from different

point of view. We are not going to perform the same analysis since we have not studied the

classical solutions of the pure spinor string in the original AdS5×S5 background however we

would like to stress some interesting points considering the condition that νi is an integer.

For νi 6= 0 we have consistent string dynamics if γi are rational since Ji take integer values

in quantum theory. Secondly, the condition νi = 0 has the general solution

νi = 0 : Ji = cγi . (6.17)

Since again Ji have to be integer in quantum theory these solutions exist for special values

of γi.

Returning back to (6.12) we see that the matrix gs is periodic. Then using also the fact

that J(i) are periodic as well we obtain that the currents J given in (3.1) obey the standard

boundary conditions. In other words we can formulate the dynamics of the theory in terms

of the original currents J and the action (3.1) is manifestly gauge invariant. According to

the analysis given in [48] the pure spinor string action in AdS5 × S5 possesses quantum

BRST invariance and also exact conformal invariance. Then using the TsT transformations

we can map the pure spinor string in the γi-deformed background that obey the conditions

that νi-that define ground states of the pure spinor world-sheet quantum field theory in γi-

deformed background- are integer to the the pure spinor string in AdS5 ×S5 with periodic

boundary conditions. But since the pure spinor string in the AdS5 × S5 with periodic
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boundary conditions possesses exact quantum conformal invariance we can expect that the

world-sheet theory of the pure spinor string in γi-deformed background formulated above

the ground states with νi integer is well defined quantum field theory.

Since we found that the proof of the conformal invariance of [48] strictly depends on the

manifest isometries of the background, in other — more realistic — situations (for instance,

N=1 supersymmetries backgrounds) another way of proving the conformal invariance has

to be developed. This would be very important in order to prove conformal invariance

of the theory expanded around other non trivial solutions which cannot be related to

the undeformed original theory. We would like to stress that this is a subject of present

investigation since it is not clear at the moment if all solution of Green-Schwarz formulation

of superstring on AdS5 × S5 string theory with a given gauge fixing are equivalent to pure

spinor formulation [69].

7. Lax pair for twisted pure spinor string

Our goal is to find, using the relations (2.22) the Lax pair for string in TsT transformed

background if an isometry invariant Lax pair for pure spinor string in flat background is

known. An existence of Lax pair in deformed theory strongly supports classical integrability

of the theory [53, 58 – 62, 68, 70].

We begin with the recalling the structure of Lax pair for pure spinor string in AdS5×S5.

In the covariant pure spinor formalism the problem has been studied in [58]. It was shown

here that there exists set of left-invariant currents Ĵ(u) 5

Ĵµ(u) = Jµ + (ηµν(cosh u − 1) + εµν sinh u)Jν(2) +

+(ηµν(cosh ueu/2 − 1) + εµν sinhueu/2)Jν(1) +

+(ηµν(cosh ue−u/2 − 1) + εµν sinhue−u/2)Jν(3) +

+ sinhueuP̃µνNν − sinh ue−uPµνN̂ν (7.1)

that satisfy the flatness condition

dĴ + Ĵ ∧ Ĵ = 0 (7.2)

that is a consequence of the equations of motion for J and ghost fields and also of the

flatness of J . Note also that Ĵ obeys the the ’initial’ condition Ĵ(0) = J .

The Lax connection given above cannot be used to derive the Lax connection in de-

formed background since J
(i)
µ given there explicitly depend on φ and consequently Ĵµ is

not isometry invariant. Moreover, if we express J (0) using (3.28) it turns out that it ex-

plicitly depends on g(z). This is due the lack of covariance under the gauge symmetry

SO(4, 1) × SO(5) of the currents hJµ after the TsT transformations are performed. In

order to solve this problem we construct a covariant version of the currents by changing

5Our spectral parameter u is related to the spectral parameter µ of [58] by µ = eu. Note also that

we have chosen one particular solution from the ones found in [58] in order to obey the initial condition

Ĵµ(0) = Jµ. It is remarkable that the classical theory admits the same two one-parameter families of flat

currents if one sets the contribution of the pure spinor ghost N to zero.
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the current in a similar way as [2, 3, 61, 64]. The corresponding flatness conditions will be

manifestly covariant if the differential d is substituted by a covariant differential.

Let us write the flat current Ĵ as

Ĵ = g−1(z)dg(z) + g−1(z)Ĵ ′g(z) . (7.3)

Then the flatness of Ĵ implies

dĴ + Ĵ ∧ Ĵ = g−1(dĴ ′ + Ĵ ′ ∧ Ĵ ′)g = 0 (7.4)

and hence dĴ ′ + Ĵ ′ ∧ Ĵ ′ = 0. Now (7.1) implies

Ĵ ′
µ(u) = g(z)Ĵµg−1(z) − ∂µg(z)g−1(z)

= Jµ + [(ηµρ(cosh u − 1) + εµρ sinhu)ηρσJ(2)
σ +

+(ηµρ(cosh ueu/2 − 1) + εµρ sinh ueu/2)ηρσJ(1)
σ +

+(ηµρ(cosh ue−u/2 − 1) + εµρ sinh ue−u/2)ηρσJ(3)
σ +

+ sinhueuP̃µνN
ν − sinhue−uPµνN̂

ν
] , (7.5)

where we have also used (3.38) and (3.46). The Lax connection Ĵ ′ (7.5) still has explicit

dependence on φi but this can be easily eliminated using the factorisation property of G and

redefinition of the fermions and pure spinors. Explicitly, using the relations (5.13), (5.15)

and (5.16)) we can write (7.5) as

Ĵ ′
µ = M J̃µM−1 + M [(ηµρ(cosh u − 1) + εµρ sinhu)ηρσJ̃(2)

σ +

+(ηµρ(cosh ueu/2 − 1) + εµρ sinhueu/2)ηρσJ̃(1)
σ +

+(ηµρ(cosh ue−u/2 − 1) + εµρ sinh ue−u/2)ηρσJ̃(3)
σ +

+ sinhueuP̃µνÑν − sinhue−uPµν
˜̂
N

ν
]M−1 ≡ M(Ĵµ − i

2
∂µΦ)M−1 . (7.6)

Then the flatness condition for Ĵ ′ implies

dĴ ′ + Ĵ ′ ∧ Ĵ ′ = M(dĴ + Ĵ ∧ Ĵ)M−1 = 0 (7.7)

and consequently we obtain the flatness condition for Ĵ

dĴ + Ĵ ∧ Ĵ = 0 . (7.8)

We see, following the arguments given in section (5) that the Lax connection Ĵ depends on

the derivatives of Φ only. Then following the arguments given in [2] we can determine the

Lax connection for pure spinor strings in the γ-deformed AdS5 ×S5 when we express ∂µφi

in terms of ∂µφ̃i with the help of the relations (2.22) and also using the fact that Ĵ depends

on variables that are neutral under U(1) only. By construction the Lax connection Ĵ is flat,

it is invariant under U(1) isometries and it also obeys the periodic boundary conditions. It

can be used to compute the monodromy matrix T (u) that is defined as the path-ordered

exponential of the spatial component of Ĵσ

T (u) = P exp

∫ 2π

0
dσĴσ(u) . (7.9)
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On the other hand we have argued that in order to study the quantum properties of the

string theory in TsT-deformed background it is necessary that the world-sheet modes in

the original AdS5 × S5 background obey the periodic boundary conditions. This results

also implies that Ĵ ′ and Ĵ are periodic as well and their analysis can be performed as

in [48, 53].

Acknowledgments
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